

Meeting Agenda Item 5b (item #1):

Demand Management Program

Demand Management Framework Technical Report

- ✓ Table of Contents Preview Next slide
- ✓ First Draft Done & shared in June with the Tehama DM Working Group
- ✓ Refined Edits Internal tweaks complete
- ✓ Next Move Awaiting DM Group feedback for final release.

DRAFT TECHNICAL REPORT

County of Tehama and Corning Subbasin Groundwater Demand Management Framework

Prepared for:

Tehama County Demand Management Ad Hoc Committee

Corning Subbasin Advisory Board

Corning Subbasin Groundwater Sustainability Agency

June 2025

Prepared by:

Table of Contents

Exe	cutive Summary	2
	Demand Management	5
	Tehama County Groundwater Demand Management Program	2
	Baseline Conditions	6
	The Demand Management Framework	
	Implementation and Proposals	8
Teh	ama County Groundwater Demand Management	11
	What is Groundwater Demand Management?	15
	Tehama County Demand Management Program Framework	15
	Tehama County Ad Hoc Committee Guiding Principles	16
	Demand Management Program Overview	17
Bas	eline Subbasin Conditions and Data	19
	Land Use and Agriculture	19
	Other Demographic and Social Conditions	
	Water Budget	23
Glo	bal Elements for the Demand Management Program	24
	Program Administration and Rules	24
	Economic Analysis: Benefits and Costs of Demand Management Components	25
	Funding Strategy	25
	Implementation Timeline	26
	Measurement	27
	Technology for Measurement	28
	Water Accounting System	30

Incentive-Driven Components: Incentivized Conservation	
Feasibility	32
Implementation	32
Incentive-Driven Components: Fallowing Programs	34
Fallow Bank	35
Land Repurposing	36
Feasibility	37
Incentive Structure	38
Program Implementation	39
Incentive-Driven Components: Extraction or Acreage-Based Fees	40
Feasibility	43
Program Implementation	43
Mandatory Components: Pumping Limits (Allocation) Program	45
Subbasin Allocation	45
Landowner Allocations	46
Implementation	47
Mandatory Components: Land or Well Restrictions	50
Well Moratoriums	50
Land Use and Development Restrictions	50
Demand Management Program Development Steps	50
Example Program Pathways ("Straw" Proposals)	51
Straw Proposal 1	51
Straw Proposal 2	51
Straw Proposal 3	52

Demand Management Program – Next Steps

- Cost Estimate: \$250K \$350K
- Define Pathways: Map the smartest, most cost-effective demand management options for each subbasin
- Crunch the Numbers: Model pumping reductions, costs and economics; build the tracking system
- Engage & Decide: Identify key decisions with stakeholders
- Admin Framework: Set up program management structure
- Timeline: Lay out clear implementation schedule
- Launch: Finalize and roll out the workplan

Meeting Agenda Item 5c

Model and Options for Periodic Evaluation

Meeting Agenda Item 5c:

SGM Implementation Grant

Model Update: Why Revisit the Model Platform?

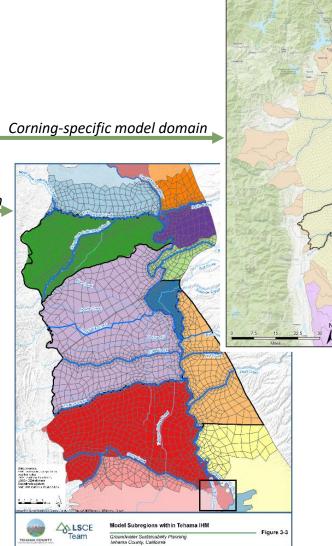
SGMA task ahead:

• 5-year Periodic Evaluation

Two candidate model platforms available for Corning GSAs:

- Corning-specific Model (C2VSimFG platform)
 - Developed by M&A
- Tehama IHM (SVSim platform)_

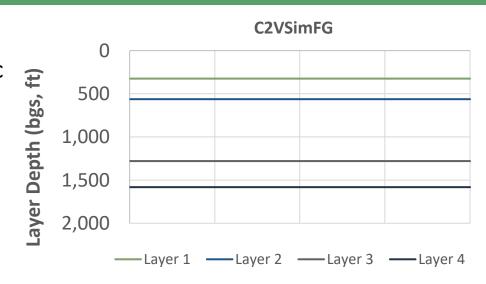
Tehama IHM model domain


- Developed by LSCE
- Tehama IHM already covers ~90% of Corning Subbasin

Consideration:

- 1. Update current Corning-specific Model (C2VSimFG platform)
- or
- 2. Update and expand *Tehama IHM* (**SVSim platform**)

Corning Subbasin


Model Platforms: Regional vs Localized Focus

Corning-specific Model (C2VSimFG platform)

- Broad Central Valley focus; less attention to local hydrogeologic detail;
- Four-layer aquifer system;
- Relies on generalized regional parameters, limited local refinements;
- Updates and calibration dependent on DWR schedule and priorities

Tehama IHM (SVSim platform)

- Developed specifically for Sacramento Valley conditions;
- Enhanced stratigraphy through a nine-layer aquifer system;
- Explicitly designed for incremental and localized updates
- Enables regional GSAs to efficiently integrate new geologic,
 hydrologic, or land-use data without extensive reliance on DWR

Advantages of Transitioning to SVSim from C2VSim

	Comparison of Corning C2VSimFG and Tehama IHM Models									
1 - Advantage	Previous	Representation of	Model			Ease of	Independence from DWR	Inter-basin Water Budget Accounting		
0 - Parity	Modeling	Corning Subbasin within Model	Layering /	Calibration Period	Calibration and Parameterization	Model Updates			Intra-Basin Coordination	
-1 - Disadvantage	Investment	Domain	Stratigraphy							
Tehama IHM	0	-1	1	1	1	1	1	1	1	
Corning C2vSimFG	0	1	-1	-1	-1	-1	-1	-1	-1	

- Greater vertical resolution (nine layers vs four), improving stream depletion and groundwater-surface water interaction analyses
- More refined and local-scale inputs such as land use, pumping distribution, and aquifer parameters
- Higher element resolution provides better local accuracy for sustainability planning

Recommendation for Transition

- Adopt Tehama IHM (SVSim) as Corning's primary platform
- Immediate benefits to stakeholders:
 - Consistency in technical assumptions across GSA boundaries
 - Streamlined inter-agency collaboration
 - More efficient use of resources, avoiding duplicative efforts and model divergence

Meeting Agenda Item 5c

Options for Periodic Evaluation

Options for Periodic Evaluation: Response to DWR's Corrective Actions

Next Steps

GSP IMPLEMENTATION REPORTING

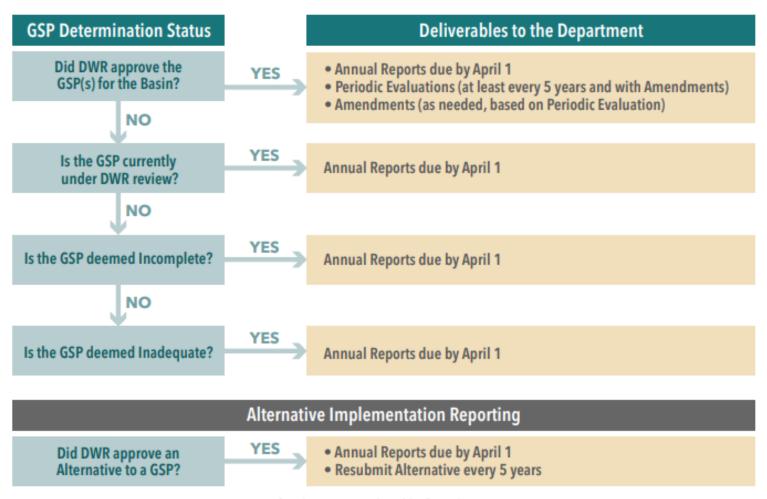


Figure 1: Summary of Implementation Deliverables for each Basin Determination Type

Periodic Evaluation Verus GSP Amendment

Periodic Update (Water Code §10728, 23 CCR §355.6)

- 1. Required **at least every 5 years** after initial GSP adoption.
- Used when the plan remains fundamentally sound, but updated data, improved understanding, or progress reporting is needed.
- 3. Includes updated water budget, monitoring results, projects & management actions status, and any refined sustainable management criteria.

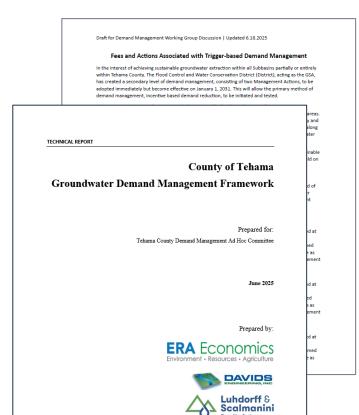
GSP Amendment (Water Code §10728.2, 23 CCR §355.10)

- 1. Required when significant changes occur that materially affect the plan's ability to achieve sustainability (e.g., revised sustainable management criteria, major hydrologic changes, new undesirable results).
- 2. Triggered when **new information** (e.g., refined model results, new groundwater-surface water interaction data) shows that the existing GSP will not meet the sustainability goal.
- 3. Required if **DWR evaluation** finds deficiencies that cannot be addressed by a periodic update alone (e.g., corrective actions or plan revisions mandated).

Periodic Evaluation (Due January 2027)

- 1. New Information Collected
- 2. Recommended Correction Actions
- 3. Groundwater Conditions
 - 1. Groundwater Levels
 - 2. Interconnected Surface Water
 - 3. Groundwater Quality
 - 4. Groundwater in Storage
 - 5. Land Subsidence
- 4. Status of Projects and Management Actions
- 5. Changes in Basin Setting Based on New Information or Changes in Water Use
- 6. Monitoring Networks
- 7. GSA Authorities and Enforcement Actions
- 8. GSA Administration, Stakeholder Engagement and Inter-Agency Coordination
- 9. Summary of Proposed or Completed Revision to the Plan Elements

Corrective Action 1


SUMMARY

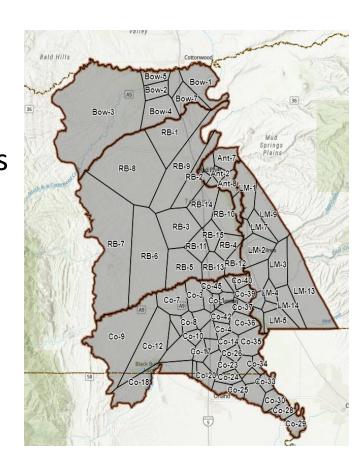
Provide:

- a) Update of overdraft estimates, groundwater conditions, and project benefits
- b) Progress on the Demand Management Program

RESPONSE

- Assessment of overdraft, current conditions, and projects
- Demand
 Management
 Framework,
 Workplan, and
 Implementation
 status update

Corrective Action 2: Groundwater Level SMCs


SUMMARY

Provide:

- a. Thiessen polygon selection criteria & explanation
- b. Criteria & process used to delineate focus areas
- c. Plan to track & report dry wells

RESPONSE

- Provide Explanations (a & b)
 - Additional analysis
- Community Domestic
 Monitoring Program
 - Dry well distribution analysis

Corrective Action 3: Groundwater Quality SMC

SUMMARY

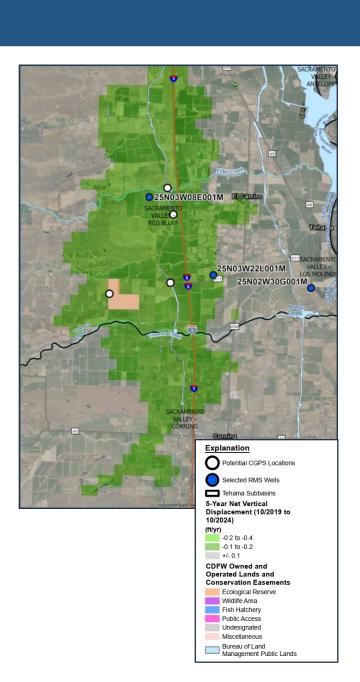
- a) Establish SMC for all constituents of concern
- b) Revise SMC
- c) Process to determine if management is causing degraded water quality or migration

RESPONSE

- General mineral testing
- Addition of new monitoring wells

Reassess SMC accordingly after completion of additional sampling

Corrective Action 4: Land Subsidence


SUMMARY

a) Consider impacts to uses
 & users to set annual
 rate, total subsidence,
 and MTs that will lead to
 URs

RESPONSE

Collect Subsidence data:

- DWR Subsidence BMPs
- 2. Install CGPS Stations
- CriticalInfrastructureSurvey as needed
 - Assess MTsbased on newdata

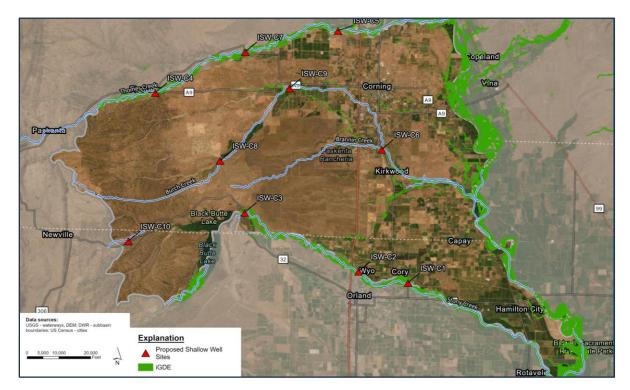
Corrective Action 5: Interconnected Surface Water

SUMMARY

- a) Estimate the quantity and timing of depletions
- b) Remove exemption for URs in unanticipated future conditions from SMCc, d, e) Use guidance issued by DWR when available.

Collaborate, fill data gaps, and

continue managing depletions


RESPONSE

a)

- o Task 3.2 & 3.3
- Established Monitoring Network

b)

SMCs revised after sufficient data collected

Corrective Action 6: Thomes Creek

SUMMARY

Provide:

 a. Plan to fill data gaps in the groundwater monitoring network near Thomes Creek

RESPONSE

Actively working to fill gaps through:

- Task 4.2 –Recharge
- Task 3.3 –StreamGaging

Periodic Evaluation Verus GSP Amendment

Periodic Update (Water Code §10728, 23 CCR §355.6)

- 1. Required **at least every 5 years** after initial GSP adoption.
- Used when the plan remains fundamentally sound, but updated data, improved understanding, or progress reporting is needed.
- 3. Includes updated water budget, monitoring results, projects & management actions status, and any refined sustainable management criteria.

GSP Amendment (Water Code §10728.2, 23 CCR §355.10)

- 1. Required when significant changes occur that materially affect the plan's ability to achieve sustainability (e.g., revised sustainable management criteria, major hydrologic changes, new undesirable results).
- 2. Triggered when **new information** (e.g., refined model results, new groundwater-surface water interaction data) shows that the existing GSP will not meet the sustainability goal.
- 3. Required if **DWR evaluation** finds deficiencies that cannot be addressed by a periodic update alone (e.g., corrective actions or plan revisions mandated).

Meeting Agenda Item 5d:

In-Lieu Recharge Matrix and Next Steps to Get Project Online

Matrix Progress Summary

- Updating Project Quotes to Reflect Current Prices
- Fill Out Matrix and Rank Projects
- Draft Landowner Agreement and Present to Landowners
- Final Ranking of Projects
- Present Findings to GSAs

Implementation

Board Approved Matrix

Category	Variable	Points	Criteria
s: cs	Project Cogistics Tandowner Tandowner		Landowner Agreement is a requirement for consideration
rojec			First project by landowner gets 1 point, subsequent projects receive no points
L P	Permitting Requirements	0-1	No additional requirements gets 1 point
i c	\$/AF (1 Year of Implementation)		Five tiers, from <\$200/AF to >\$800/AF, projects with lower cost per acre-foot recieves
Project Benefit		0-2.5	higher score
Pre	Groundwater Storage Polygon	0-3.5	Projects in Polygons with larger annual groundwater reduction receive higher score

\$/AF (1 Year of Implementation) Tiers								
Points	Cost per Acre Foot							
0	>\$800							
0.625	\$600 - \$800							
1.25	\$400 - \$600							
1.875	\$200 - \$400							
2.5	< \$200							

	Groundwater Storage Tiers									
Points	oints Avg Reduction in GW Storage (AF/acre/yr)									
0	< 0									
1.75	0 - 0.03									
3.5	> 0.03									

Updating Quotes and Information for Projects

	Project Information and Lostistics												Project Be	enefit			
Project Name	Landowner ID	Landowner Agreement	Latitude	Longitude	Direct, In-Lieu, or Both	Subbasin	County	Water District	Water Source	Description of Improvements	Permitting Requirements	Description of Monitoring	Groundwater Offset (AF)	Area (Acres)	Cost Estimate	\$/AF (1 year of implementation)	Groundwater Storage Polygon
										Needs pump, filter, USBR							
GT-1 LLC			39.83407	-122.17389	In-Lieu	Corning	Tehama	Kirkwood WD	T-C canal	approval	Yes	Meter on T-Cturnout	262.0 1	30 acres	\$263,384.00	\$1,005	Co-22
JC1			39.953627	-122.184061	In-Lieu	Corning	Tehama	Corning WD	Corning WD		No	Meter on CWD outlet	61.0 3	5 acres	\$4,252.00		Co-45
JC2			39.944264	-122.188306	In-Lieu	Corning	Tehama	Corning WD	Corning WD	Needs CWD meter, pipe, filters	No	Meter on CWD outlet	60.0 2	0 acres	\$12,520.80	\$209	Co-1
										Sand media filter, PVC pipe +							
RC1			39.899045	-122.191566	In-Lieu	Corning	Tehama	Corning WD	Corning WD	labor	No	Meter on CWD outlet	39.0 1	5 acres	\$11,006.00	\$282	Co-42
Cr - Phase 1			39.96162	-122.25359	In-Lieu	Corning	Tehama	Corning WD	Corning WD	Needs booster pump and filters	No	Meter on CWD outlet	368.0 1	75 acres	\$74,778.85	\$203	Co-3
										More pump/filter capacity to serve							
Cr - Phase 2			39.96162	-122.25359		Corning		Corning WD	Corning WD	more acreage	No	Meter on CWD outlet	368.0 1		\$62,101.00	\$169	
MAG			39.855965	-122.173566	In-Lieu	Corning	Tehama	Kirkwood WD	T-C canal	Needs new pump, filters	No	Meter on T-Cturnout	320.0 1	50 acres	\$142,014.00	\$444	Co-14
										Needs pump, filter, USBR pump							
										license (as of 3/24/25 it is under							
H F-K			39.858448	-122.172934	In-Lieu	Corning	Tehama	Kirkwood WD	T-C canal	review and pending approval)	No	Meter on T-Cturnout	250.0 1	24 acres	\$198,023.00	\$792	Co-14
										Needs filters, loss of power unit							
H F-C			39.90335	-122.27932		Corning		Corning WD	Corning WD	prime batteries	No	Meter on CWD outlet	202.0 1	.00 acres	\$150,222.00	\$744	
MC			39.79318	-122.23465		Corning			.OUWUA	Filters, VFD, trash rack, etc.	No	Meter on OUWUA outlet	169.0 6		\$164,362.00	\$973	
Hd			39.88616	-122.210865	In-Lieu	Corning	Tehama	Corning WD	Corning WD	Meter from Corning WD	No	Meter on CWD outlet	8.0 3	acres	\$4,995.00	\$624	Co-5
										705 feet of 6-inch pipe with valves							
Kg			39.90365	-122.18474	In-Lieu	Corning	Tehama	Corning WD	Corning WD	every 20 feet to flood irrigate	No	Meter on CWD outlet	16.0 7	acres	\$22,967.00	\$1,435	Co-42
R1			39.88769	-122.21274	In-Lieu	Corning	Tehama	Corning WD	Corning WD	Sand media, labor and VFD, booster + CWD meter	No	Meter on CWD outlet	51.0 2	0 acres	\$44,215.00	\$867	Co-5
										Sand media filter, PVC pipe, labor and VFD and booster pump + CWD							
R 2			39.89714	-122.21384	In-Lieu	Corning	Tehama	Corning WD	Corning WD	meter	No	Meter on CWD outlet	77.0 3	8 acres	\$48,584.00	\$631	Co-6
								Orland Unit Water Users'									
PP			39.759406	-122.129528	In-Lieu	Corning	Glenn	Assn.	OUWUA	Need 50 HP pump and PVC pipe	No	Meter on OUWUA outlet	115.0 3	5 acres	\$24,744.00	\$215	Co-25
Rs					In-Lieu	Corning	Tehama	Corning WD	Corning WD		No	Meter on CWD outlet	114.0 4	9 acres			
Bm			39.95286	-122.21141	In-Lieu	Corning	Tehama	Corning WD	Corning WD		No	Meter on CWD outlet	155.0 7	7 acres	\$6,210.71	\$40	Co-2

Preliminary Ranking of Projects

Project Name	Multiple Project	Multiple Project Score	Permitting Requirement	Permitting Score	\$/AF	\$/AF Score	Groundwater Storage Polygon	Storage Polygon Score	Total Score
GT-1 LLC	No	1	Yes	0			Co-22	1.75	2.75
JC1	No	1	No	1			Co-45	3.5	5.5
JC2	Yes	0	No	1			Co-1	1.75	2.75
RC1	No	1	No	1			Co-42	1.75	3.75
Cr - Phase 1	No	1	No	1			Co-3	1.75	3.75
Cr - Phase 2	Yes	0	No	1			Co-3	1.75	2.75
MAG	No	1	No	1			Co-14	3.5	5.5
H F-K	No	1	No	1			Co-14	3.5	5.5
H F-C	Yes	0	No	1			Co-11	3.5	4.5
MC	No	1	No	1			Co-20	3.5	5.5
Hd	No	1	No	1			Co-5	3.5	5.5
Kg	No	1	No	1			Co-42	3.5	5.5
R 1	No	1	No	1			Co-5	1.75	3.75
R 2	Yes	0	No	1			Co-6	#N/A	#N/A
PP	No	1	No	1			Co-25	1.75	3.75
Rs	No	1	No	1					2
Bm	No	1	No	1			Co-2	#N/A	#N/A

Meeting Agenda Item 5d:

Domestic Well Monitoring Status

Community Domestic Monitoring Program Status

- ✓ 4 volunteers in the Corning Subbasin (1 in Glenn County)
- ✓ Draft access agreement in review
- ✓ Purchase orders received for equipment

Community Domestic Monitoring Program: Next Steps

- Approve access agreement and execute with volunteers (first half of August)
- Schedule and install equipment on volunteer wells (second half of August)

Create video content during installation (end of August)

Register more participants (through September)

- Short videos for outreach and document installation procedures
- Begin data visualization integration (beginning of September)
- Purchase remainder of monitoring equipment (end of September)

Meeting Agenda Item 5d:

Schedule

- ✓ All Feasibility Studies completed in Corning Subbasin.
- ✓ Corning South Pond project (Task 2) infeasible due to poor recharge potential.
- ✓ Feasible projects are in the design phase.

Tehama GSA GSP Implementation Project CSAB Meeting – 8.06.2025

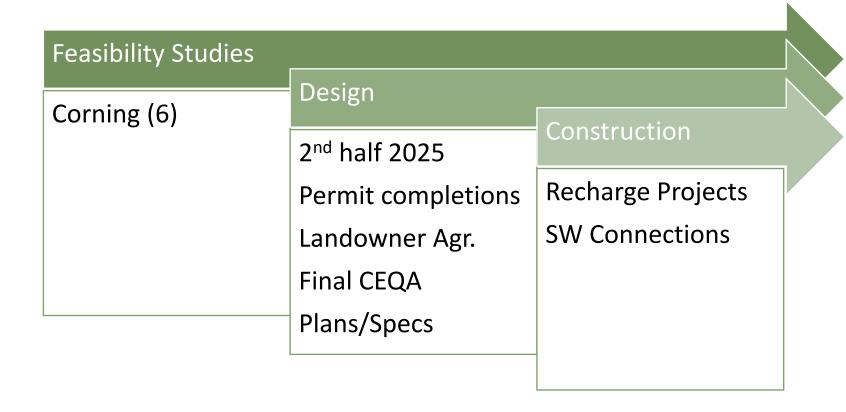
Feasibility Studies Status – Corning Subbasin (7/30/2025)

DWR Grant Cost Category	Corning Subbasin % Complete
Feasibility Studies	
- Task 1 – Brannin Creek Dry Well Recharge	100%
- Task 2 – South of Corning Recharge Pond (Infeasible)	100%
- Task 3 – Multi-benefit Recharge Project (Simpson Road)	100%
- Task 4 – California Olive Ranch Recharge	100%
- Task 5 – Thomes Creek Diversions For Recharge	100%
- Task 6 – Stony Creek Diversions For Recharge	100%

Schedule: Submit to DWR with Invoicing/Progress Report 6.

- ✓ All Multi-completion wells completed in Corning Subbasin.
- ✓ Stream gages to be completed by 11/28/2025.
- ✓ Shallow Monitoring Wells to be completed by 11/28/2025.

Tehama GSA GSP Implementation Project CSAB Meeting – 8.06.2025


Monitoring Network Completion Status (7/30/2025) – M-C Wells

DWR Grant Cost Category	Corning Subbasin
Monitoring Network Enhancements	Multi-Completion Wells
- Feasibility Study - Sites	100%
- 100% Design Plans & Specs.	100%
- Permits	100%
- Site Summary Report	100%
- Construction Photos	100%
- Notice of Completion	100%
- As-built Drawings	100%
- Well Completion Reports	100%
- Community Monitoring Plan	100%
- Monitoring Equipment Technical Memorandum	100%

- ✓ Design in-process and permits under review.
- ✓ MOUs and Agreements in-process.
- ✓ SW connections to begin in Fall 2025.

- ✓ Discussing DWR Funding Agreement Schedule Extension for Corning Subbasin (currently 3/31/2026).
- ✓ Schedule extension requested to 12/31/2026 for GSP update and modeling tasks.
- ✓ Schedule extension requested to 12/31/2026 for recharge project construction tasks.

Meeting Agenda Item 5d:

Other Items of Interest

Well Video Task Update

Purchased a down-well video camera for both GSAs

Features and Accessories Included:

 Camera Probe – 22mm (7/8") diameter, 316 marine grade, fully pressure rated

- Lens robust, scratch resistant clear sapphire
- 160° wide viewing angle
- LED Lights 7 ultra-bright adjustable
- Monitor resolution 600x1024, (7"), full colour, IP65
- Adjustable Positioning Arm a solution for adjusting the monitor for viewing in various angles and lighting conditions
- Batteries (x2) removable, rechargeable lithium ion, up to 5 hours (3200mAh) per battery
- Charger plug type A, AC Input, compact, portable
- DVR- records video and audio feed
- SD Card removable for transferring files to computer
- Microphone 3.5mm jack, for audio voice over
- Centralizer removable, centers and stabilizes camera probe in well
- Retrieval Hook for light weight items
- Monitor Visor for glare free viewing
- Hanger and Tape Guide built-in, to support the unit at the well head and protect the tape from sharp edges
- Tape polyethylene, 4 conductors

