

Corning Subbasin Advisory Board WY 2022 Annual Report Update

Eddy Teasdale, PG, CHG (LSCE) & Jeff Davids, PhD, PE (DE)

April 5, 2023

Annual Report Requirements

- Updates on Groundwater Conditions
 - Groundwater Elevation (Hydrographs, Contour Maps)
 - Change in Groundwater Storage
- Water Supply and Water Use
 - Groundwater Extraction
 - Surface Water Supplies
 - Total Water Use
- Progress Toward Plan Implementation
 (e.g., implementation of planned projects and management actions)

Where are We Headed Today?

Overview

Groundwater Conditions

Water Supply and Water Use (Water Budget)

Progress Towards GSP Implementation

ANNUAL REPORT | APRIL 2023

CORNING SUBBASIN GROUNDWATER SUSTAINABILITY PLAN ANNUAL REPORT – 2022

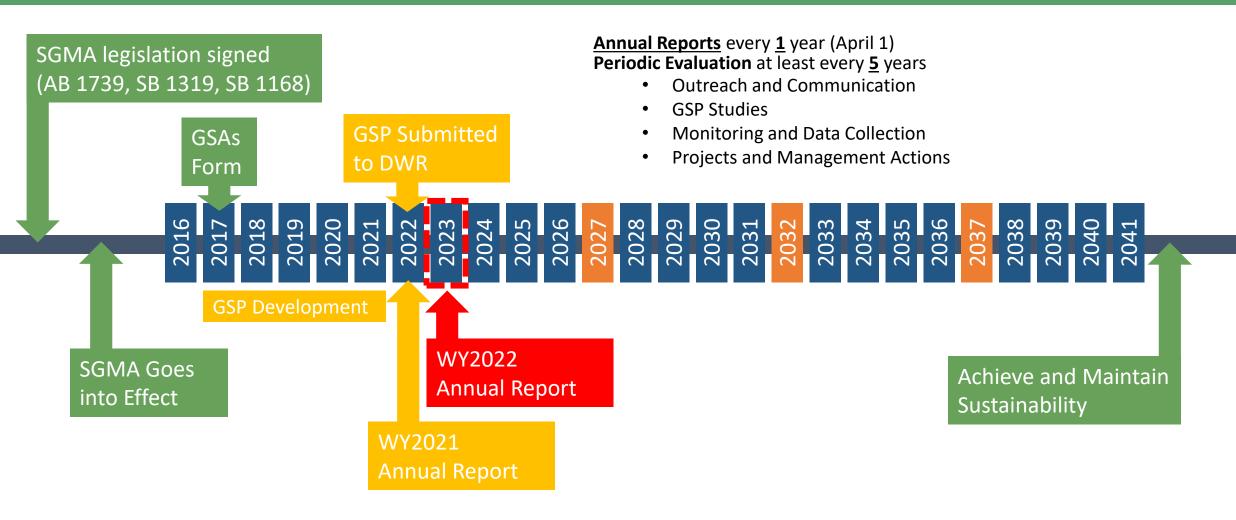
PREPARED FOR

TEHAMA COUNTY GSA CORNING SUB-BASIN GSA

PREPARED BY

EDDY TEASDALE, PG, CHG

LUHDORFF AND SCALMANINI, CONSULTING ENGINEERS 500 1ST STREET WOODLAND, CA 95695



Overview – SGMA Implementation Timeline

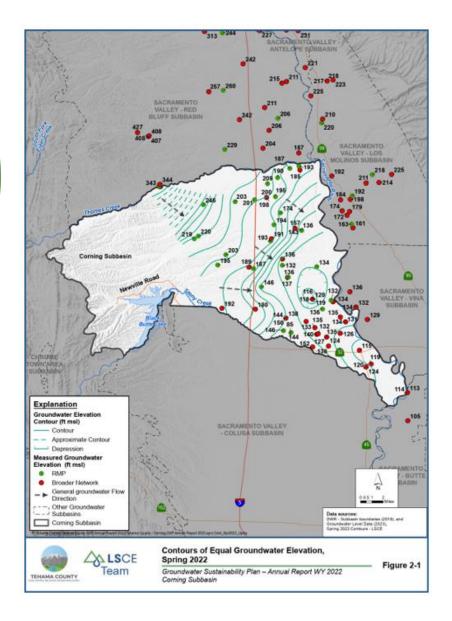
Groundwater Conditions

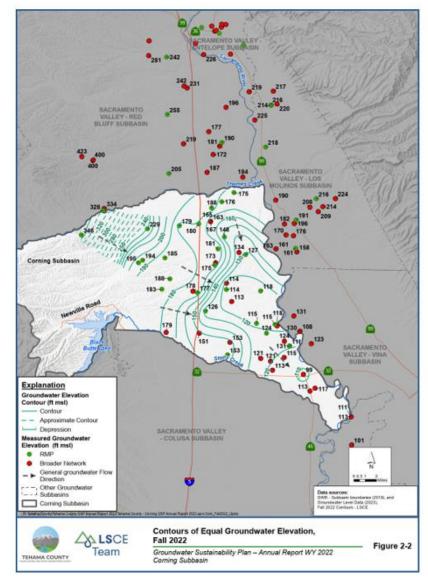
- Groundwater Elevations
 - 54 Representative Monitoring Site Wells
 - 35 shallow portion of the aquifer
 - 19 wells screened in the deeper portion of the aquifer
- Groundwater Storage
 - Utilizing RMP wells
- Groundwater Quality
 - Utilize Existing Production Well data
- Subsidence
 - InSAR
- Surface Water Depletion
 - 8 Shallow Wells

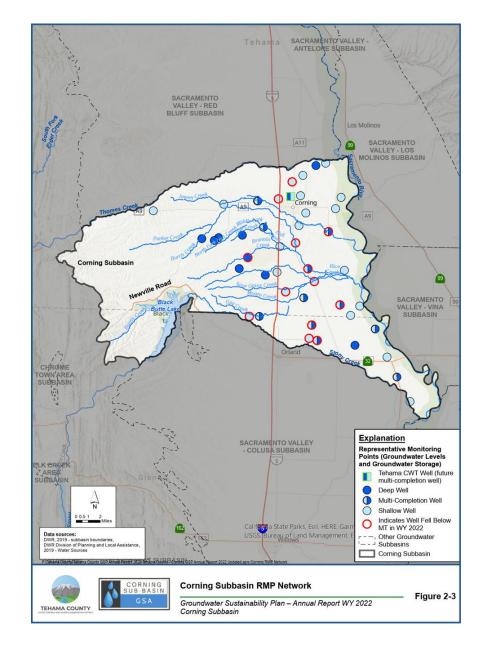
Lowering Groundwater Levels

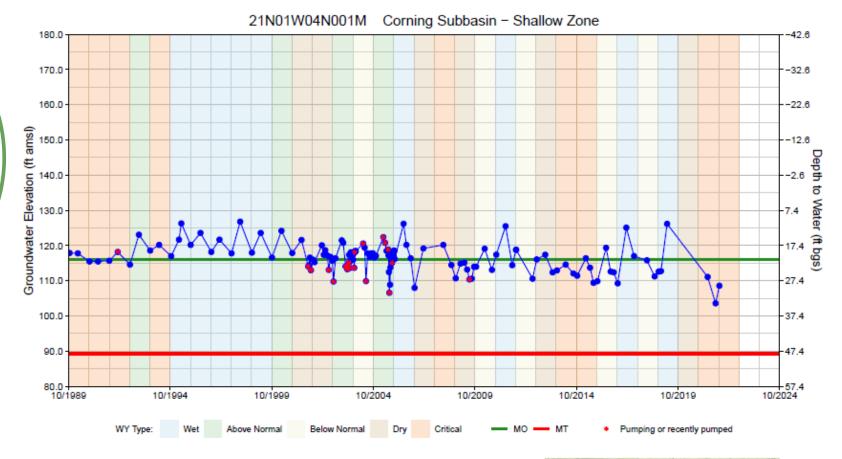
Degraded Quality

Reduction of Storage




Land Subsidence

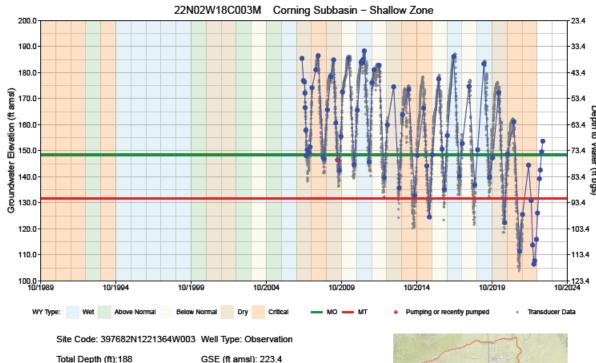



Groundwater Elevations

- 54 Representative Monitoring Point (RMP) Wells
- 35 shallow portion of the aquifer
- 19 wells screened in the deeper portion of the aquifer
- 16 of the 54 wells had fall measurements below the MT in 2022.
- Undesirable results occur when 20% of the RMP wells fall below the MT in two consecutive years
- No undesirable results as only 15% (6 wells) of RMP wells fall below the MT in two consecutive years

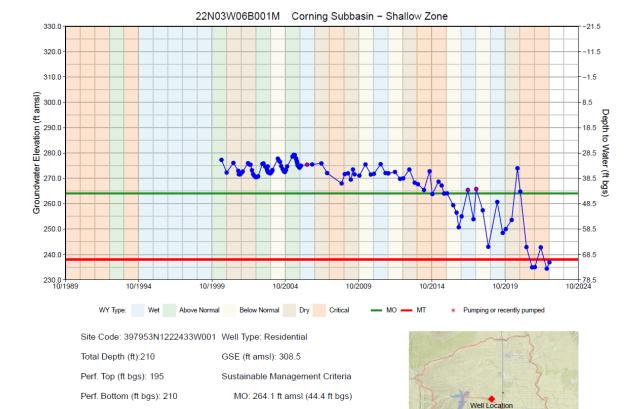
Site Code: 396971N1219893W001 Well Type: Residential

Total Depth (ft):100 GSE (ft amsl): 137.4


Perf. Top (ft bgs): NA Sustainable Management Criteria

Perf. Bottom (ft bgs): NA MO: 116.1 ft amsl (21.3 ft bgs)

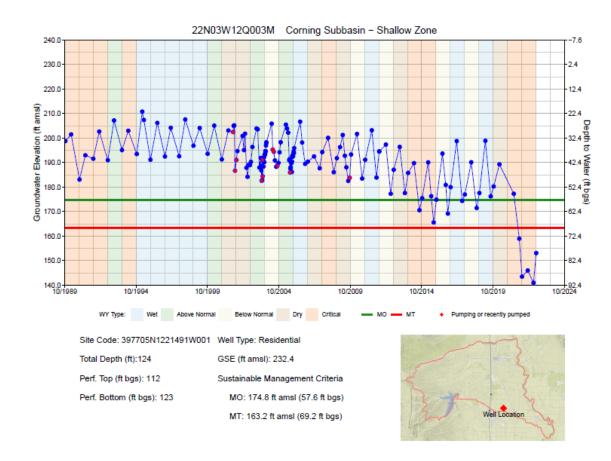
MT: 89.3 ft amsl (48.1 ft bgs)

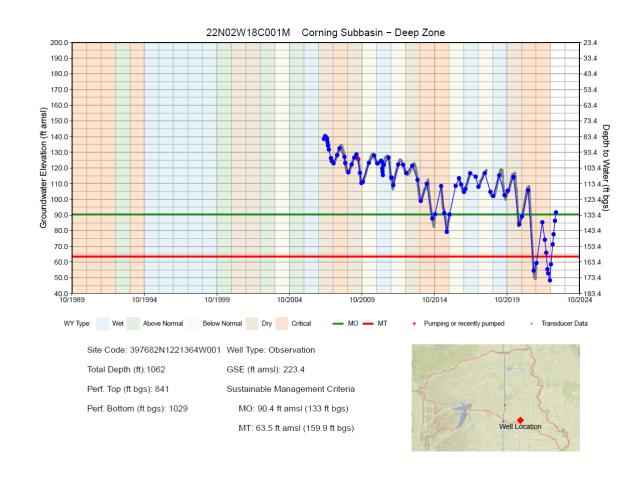

GSE (ft amsl): 223.4

Perf. Top (ft bgs): 165 Sustainable Management Criteria

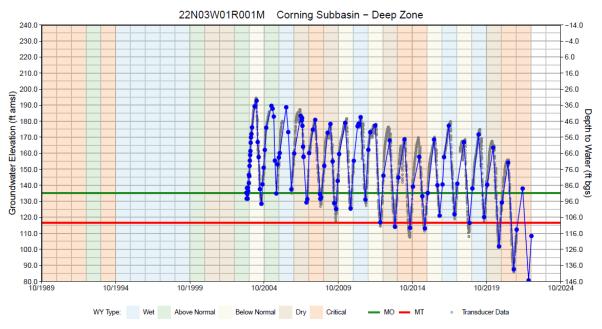
MT: 131.6 ft amsl (91.8 ft bgs)

MO: 148.4 ft amsl (75 ft bgs)




MT: 238 ft amsl (70.5 ft bgs)

Perf. Bottom (ft bgs): 175

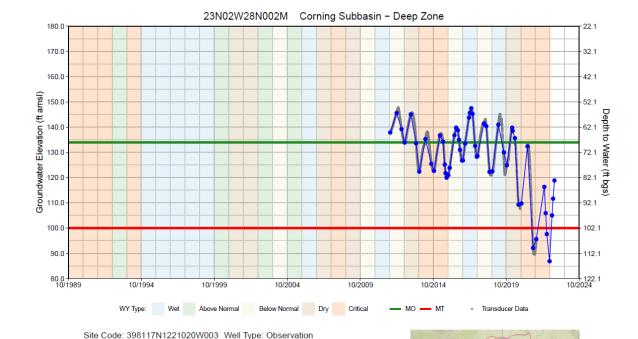


Total Depth (ft):580

Perf. Top (ft bgs): 550

Perf. Bottom (ft bgs): 570

Site Code: 397866N1221455W001 Well Type: Observation


Total Depth (ft):515 GSE (ft amsl): 226

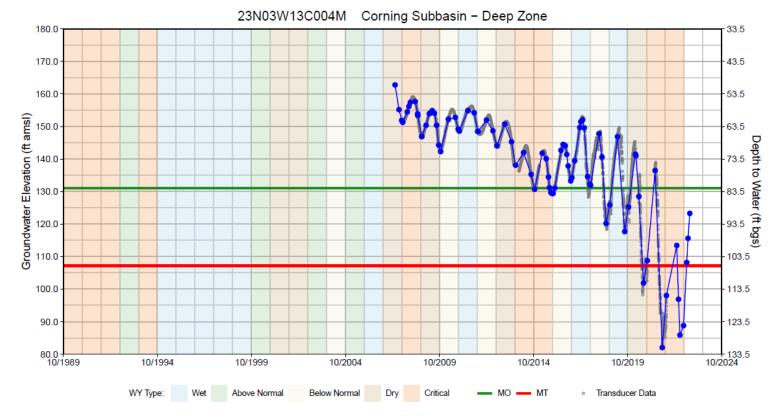
Perf. Top (ft bgs): 470 Sustainable Management Criteria

Perf. Bottom (ft bgs): 480 MO: 135.2 ft amsl (90.8 ft bgs)

MT: 116.6 ft amsl (109.4 ft bgs)

GSE (ft amsl): 202.1

Sustainable Management Criteria


MO: 133.9 ft amsl (68.2 ft bgs)

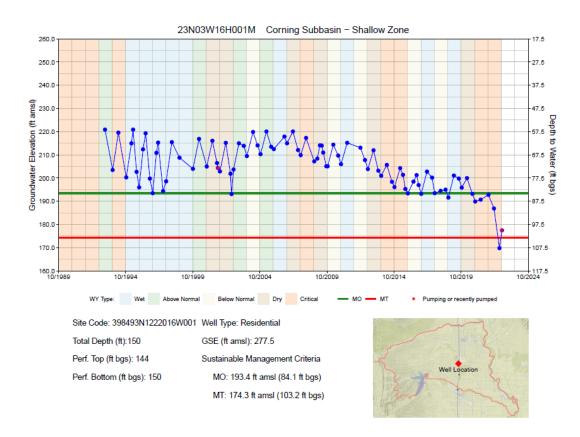
MT: 100 ft amsl (102.1 ft bgs)

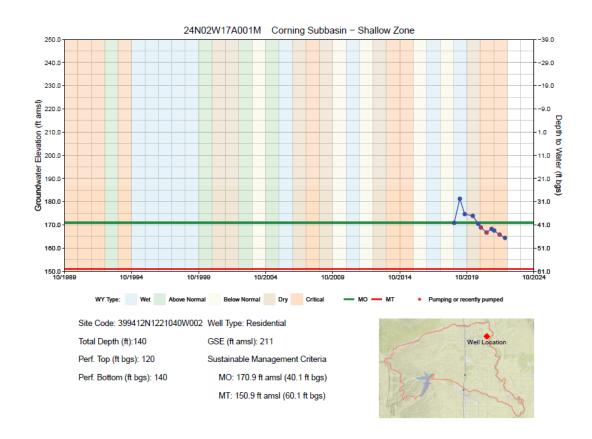
Well Location

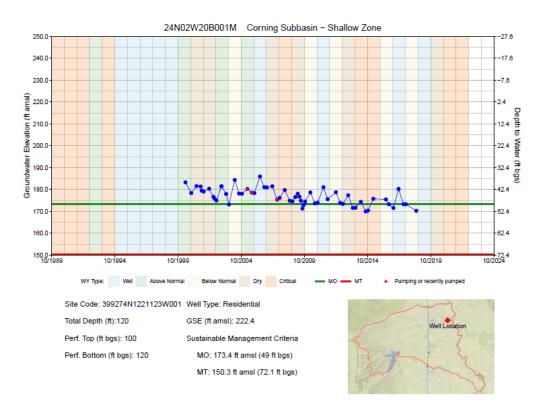
Site Code: 398543N1221535W002 Well Type: Observation

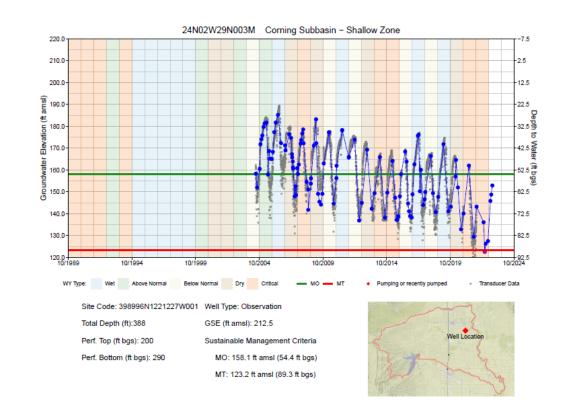
Total Depth (ft):835 GSE (ft amsl): 213.5

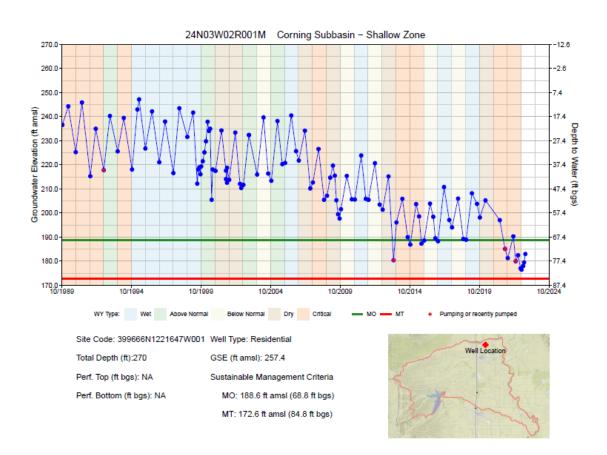
Perf. Top (ft bgs): 815 Sustainable Management Criteria

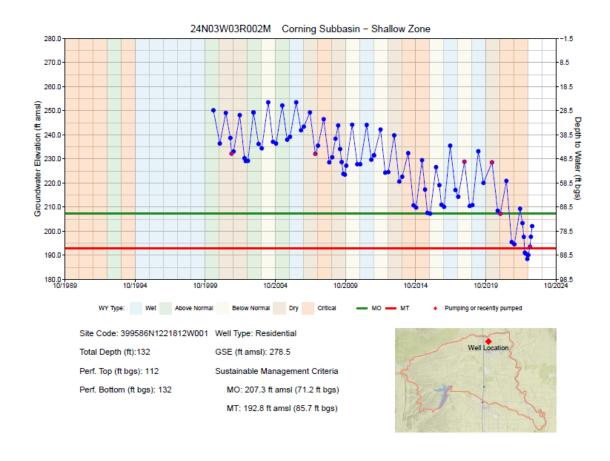

Perf. Bottom (ft bgs): 825 MO: 131.1 ft amsl (82.4 ft bgs)

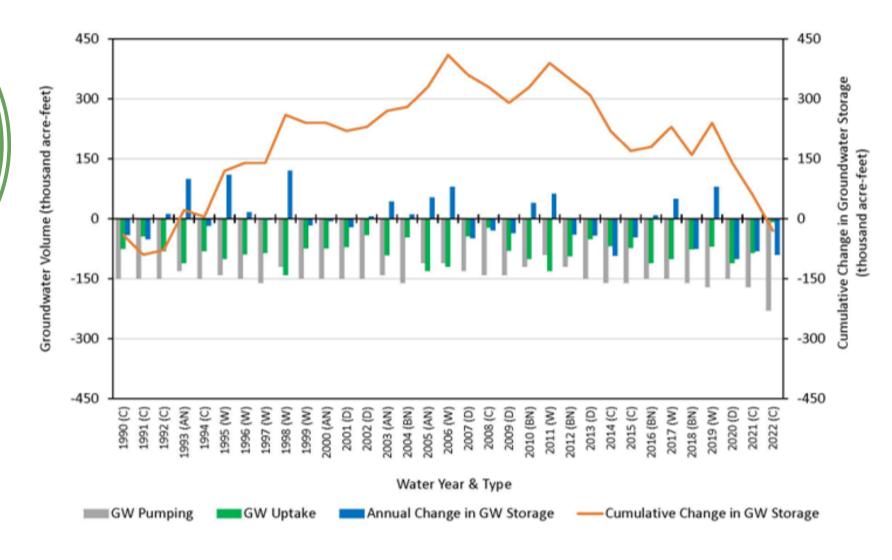

MT: 107.2 ft amsl (106.3 ft bgs)











Groundwater Conditions – Groundwater Storage

Groundwater Conditions – Groundwater Storage

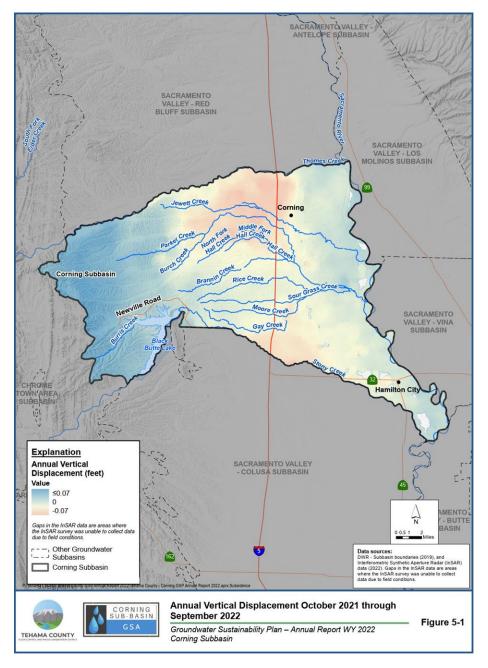
Table 4-1. Change in Groundwater Storage						
Water Year & Type ^a	Groundwater Pumping (af)	Groundwater Uptake (af)	Total Groundwater Pumping and Uptake (af)	Annual Groundwater Storage Change (af)	Cumulative Groundwater Storage Change (af)	
2011 (W)	-90,000 b	-130,000 b	-220,000	63,000 b	390,000	
2012 (BN)	-120,000 b	-93,000 b	-210,000	-39,000 b	350,000	
2013 (D)	-150,000 b	-51,000 b	-200,000	-41,000 b	310,000	
2014 (C)	-160,000 b	-68,000 b	-230,000	-92,000 b	220,000	
2015 (C)	-160,000 b	-72,000 b	-230,000	-46,000 b	170,000	
2016 (BN)	-150,000 °	-110,000 °	-260,000	8,000 ^d	180,000	
2017 (W)	-150,000 °	-100,000 °	-250,000	50,000 d	230,000	
2018 (BN)	-160,000°	-76,000°	-240,000	-75,000 ^d	160,000	
2019 (W)	-170,000 °	-69,000°	-240,000	80,000 ^d	240,000	
2020 (D)	-150,000 °	-110,000°	-260,000	-100,000 d	140,000	
2021 (C)	-170,000 °	-85,000 °	-260,000	-80,000°	60,000	
2022 (C)	-230,000 ^f	-7,300 ^f	-240,000	-90,000°	-30,000	
Average	-150,000	-81,000	-230,000	-1,000		

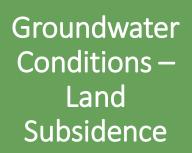
All volumes are rounded to two significant digits.

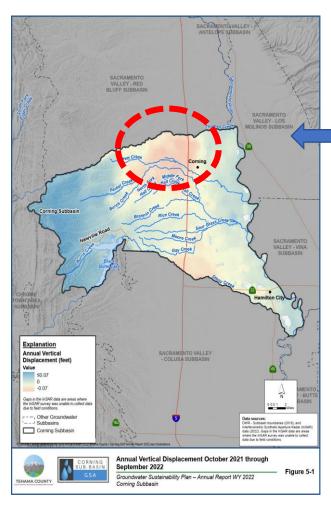
Groundwater Conditions – Groundwater Quality

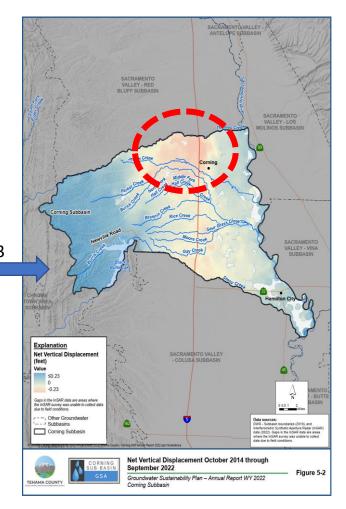
Table 5-2 Most Recent Groundwater Quality RMP Data						
Program Site ID	Well Name	System Name	Most Recent TDS Measurement Date	Most Recent TDS Value (mg/L)	MO (mg/L)	MT (mg/L)
1110002- 001	Well 01- 01	Cal-Water Service Co – Hamilton City	6/24/2020	280	500	750
1110002- 002	Well 02- 01	Cal-Water Service Co – Hamilton City	4/14/2021	280	500	750
1110002- 003	Well 02- 02	Cal-Water Service Co – Hamilton City	6/6/2022	250	500	750
5200255- 001	Well 01	Corning RV Park	9/12/2018	228	500	750
5200516- 001	Well 01	Lazy Corral Mobile Home Park	7/12/2017	262	500	750
5200551- 001	Well 01	Woodson Bridge Mobile Home Park	8/25/2010	220	500	750
5200556- 001	Well 01	Maywood Mobile Home Park	5/23/2017	260	500	750
5210001- 001	6 th St Well	City of Corning	12/11/2019	196	500	750
5210001- 002	Blackburn Ave Well	City of Corning	12/11/2019	214	500	750
5210001- 003	Butte St Well	City of Corning	12/18/2019	209	500	750
5210001- 005	Peach St Well	City of Corning	9/9/2020	230	500	750
5210001- 008	Well 06 Edith Ave	City of Corning	12/18/2019	192	500	750
5210001- 009	Fripp St Well	City of Corning	8/18/2021	209	500	750
5210001- 010	Highway 99W Well	City of Corning	12/18/2019	165	500	750
5210001- 019	Clark Park Well	City of Corning	5/16/2018	211	500	750

- Groundwater quality is measured in public supply wells by the operational entities.
- Data is made available to the GSAs through publicly available sources.
- The most recent available total dissolved solids (TDS) concentrations from the water quality monitoring network are below the measurable objective (MO) (Table 5-2).
- If concentrations remain below the MO. The GSA is on track to stay below the MT for water quality.




Groundwater Conditions – Land Subsidence


- Land Subsidence
 - Utilizing
 Interferometric
 Synthetic Aperture
 Radar (InSAR)
- Minimum Threshold
 (MT) = 0.5 feet per
 five years (0.1 foot per
 year)
- Measurable ObjectiveZero Subsidence

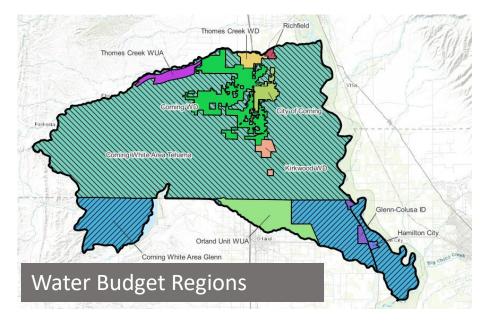


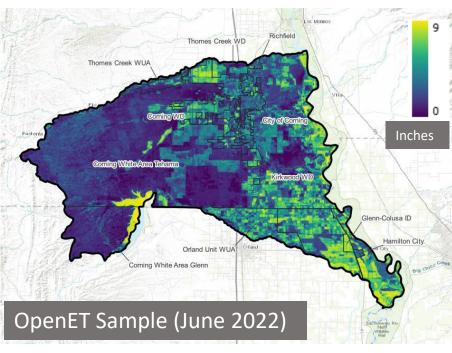
- WY 2022 (InSAR) = -0.07 to 0.07
- WY2015 WY2022 (InSAR) = -0.23 to 0.23
- Highest Subsidence
 West of Corning

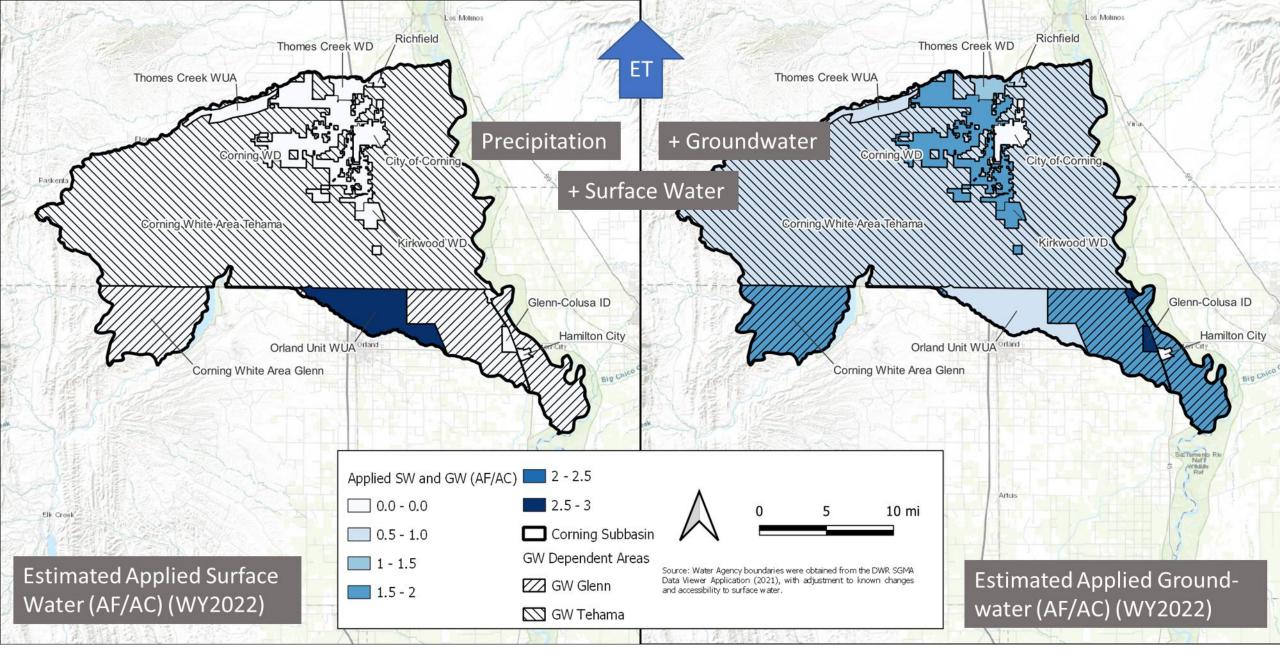
Groundwater
Conditions –
Surface Water
Depletion

Table 5-3 Depletion of Interconnected Surface Water Data and SMC							
Well ID	MT (ft MO (ft NAVD88) NAVD88)		2027 Interim Milestone	Fall Maximum Groundwater Elevations		Fall 2022 MT	Two Consecutive WY MT
			(ft NAVD88)	2021	2022	Exceedance	Exceedances
22N01W29N003M	91.7	123.4	123.2	115.07	106.19	-	-
22N02W01N003M	99.3	136.5	133.2	123.48	110.7	-	-
22N02W15C004M	84.0	144.1	135.4	114.54	109.72	1	-
22N02W18C003M	131.6	148.4	147.6	125.48	115.94	Yes	Yes
22N03W01R002M	123.6	143.9	143.9	125.37	115.43	Yes	No
23N02W28N004M	104.3	142.7	139.3	124.58	114.69	-	-
24N02W29N003M	123.2	158.1	146.9	143.21	127.46	-	-
Glenn TSS Well	237.5	262.8	262.8	302.48	305.38	-	-

- Fall 2022, most groundwater elevations were above the established MT
- Two Wells had groundwater elevations below the MT
- Undesirable results occur when water levels in 20% of the RMP wells fall below the MT in two consecutive years
- 13% (1 out of 8 wells) have measurements (over a two-year period below the MT)




Water Supply and Water Use (Water Budget)


- Monthly timestep
- Based on Evapotranspiration (ET) from OpenET and Precipitation from PRISM
- Aggregated by with land use (DWR 2020 and CropScape 2022)
- Reported USBR Central Valley Operations (CVO) Reported SW Deliveries
- Measured Groundwater Extraction (Municipal)
- Domestic estimated from Urban Water Management Plans (UWMPs)
- Results summarized by water budget regions and land use
- Can be refined to field scale application

Water Supply and Water Use (Water Budget)

Table 3-5 Estimated Uncertainty in Water Use Estimates						
Water Budget Component	Data Source	Estimated Uncertainty (%)	Source			
	Ground	lwater Water				
Agricultural	Measurement	20%	Typical uncertainty from water balance calculation.			
Urban	Measurement/Estimate	5%	Typical accuracy of urban water system reporting.			
Rural Residential	Calculation	15%	Estimated from per capita water use and Census information.			
Native Vegetation (Plant groundwater uptake)	Calculation	25%	Estimated based on land use classification, precipitation, and ET.			
Surface Water						
Agricultural	Calculation	10%1	Estimated from Senate Bill 88 (SB 88) measurement accuracy standards.			

¹ Higher uncertainty of 10%-20% is typical for estimated surface water inflows, including un-gaged inflows from small watersheds into creeks that enter the Basin.

Water Supply and Water Use (Water Budget)

Table 3-4 Total Water Use by Water Use Sector					
	2022 (af)				
Sector	Groundwater	Surface Water	Total		
Agricultural	230,000	26,000	256,000		
Urban	4,600	0	4,600		
Rural Residential	220	0	220		
Native Vegetation (Plant groundwater uptake)	7,300	0	7,300		
Total	242,120	26,000	268,120		
Total (excluding Native Vegetation1)	234,820	26,000	260,820		

¹ Excludes native vegetation which involves only natural plant uptake of shallow groundwater, not direct pumping, and extraction.

Water Budget Results by Water Budget Region

Water Budget Region	Area (AC)		Estimated Groundwater Extraction (AF/AC)
Corning WD	13,614	25,900	1.9
Kirkwood WD	1,273	2,400	1.9
Orland Unit WUA	8,592	4,300	0.5
Thomes Creek WD	1,407	1,700	1.2
Thomes Creek WUA	2,212	1,900	0.9
Glenn-Colusa ID	920	2,600	2.8
City of Corning	2,239	1,100	0.5
Hamilton City	282	0	0.0
Richfield	348	300	0.9
Corning White Area Glenn	36,091	58,500	1.6
Corning White Area Tehama	140,436	126,600	0.9
Totals	207,414	233,000	1.1

Water Budget Results by Land Use

Land Use Classification	Δrea (Δ()		Estimated Groundwater Extraction (AF/AC)
Citrus and Subtropical	18,250	40,000	2.2
Almonds	17,537	55,000	3.1
Miscellaneous Deciduous	16,108	37,000	2.3
Walnuts	13,466	48,000	3.6
Miscellaneous Pasture	7,504	19,000	2.5
Grain and Hay	6,083	12,000	2.0
Idle	5,864	0	0.0
Urban	5,243	0	0.0
Open Urban	4,964	0	0.0
Native Vegetation	99,256	0	0.0
Riparian Vegetation	2,525	7,000	2.8
Others	10,612	14,000	1.3
Totals	207,414	233,000	1.1

GSP Implementation

- Updates discussed in the annual report (Section 5.2)
- Highlights in 2022:
 - Submitted SGMA Implementation Round 2 grant application in December 2022
 - GSP Implementation Outreach and Compliance Activities
 - Ongoing Monitoring, Data Gaps, and Enhancements
 - Project and Management Action Implementation Regional Conjunctive Use Projects
 - Project and Management Action Implementation Recharge Focused

GSP Implementation (Continued)

The Corning Subbasin GSAs have also supported a proposal for a project to be submitted for funding through the **United States Bureau of Reclamation's WaterSMART Environmental Water Resources Projects grant opportunity**. The proposed project is to enhance the Corning Water District's (CWD) Supervisory Control and Data Acquisition (SCADA) system and provide infrastructure and outreach to promote in-lieu and direct recharge. The objectives of the program are to:

- Upgrade CWD's SCADA system in accordance with their 2020 Water Management Plan,
- Configure a new water information system to collect meter readings and provide landowners access to water use,
- Provide required infrastructure to conduct groundwater recharge in accordance with the Corning Subbasin Groundwater Sustainability Plan (GSP), and
- Conduct landowner and stakeholder outreach to promote in-lieu and direct groundwater recharge.
- Tehama County is making progress with a Well Registration Program (well inventory) and Glenn County is updating its well permitting process.

